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Abstract. Research on driving simulation has increasingly been con-
cerned with the user’s experience of immersion and realism in mixed re-
ality environments. One of the key issues is to determine whether people
perceive and respond differently in these environments. Physiological sig-
nals provide objective indicators of people’s cognitive load, mental stress,
and emotional state. Such data can be used to develop effective compu-
tational models and improve future systems. This study was designed to
investigate the relationship between the verisimilitude of simple driving
simulators and people’s physiological signals, specifically GSR (galvanic
skin response), BVP (blood volume pulse) and PR (pupillary response).
A within-subject design user experiment with 24 participants for five dif-
ferent driving simulation environments was conducted. Our results reveal
that there is a significant difference in the mean of GSR among the con-
ditions of different configurations of simple driving simulators, but this
is not the case for BVP and PR. The individual differences of gender,
whether people wear glasses and previous experiences of driving a car or
using a driving simulator are correlated with some physiological signals.
The data is classified using a hybrid GA-SVM (genetic algorithm-support
vector machine) and GA-ANN (artificial neural network) approach. The
evaluation of the classification performance using 10-fold cross-validation
shows that the choice of the feature subset has minor impact on the clas-
sification performance, while the choice of the classifier can improve the
accuracy for some classification tasks. The results further indicate that
the SVM is more sensitive to the selection of training and test data than
the ANN. Our findings inform about the verisimilitude of simple driving
simulators on the driver’s perceived fidelity and physiological responses.
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Implications for the design of driving simulators in support of training
are discussed.

Keywords: Driving simulation · Virtual reality · Sensor · Eye track-
ing · User study

1 Introduction

Research on driving simulation is becoming increasingly interested in the user’s
experience of immersion and realism when these simulations are moved to virtual
reality (VR) environments [32,37]. One of the key issues regarding realism in in-
telligent VR system design is to determine whether people perceive and respond
differently in VR. In addition to subjective user-perceived measures that are ex-
tensively used in VR studies, physiological signals provide objective indicators
of people’s cognitive load, mental stress, and emotional state. Such data can
be used to develop effective computational models and improve future systems.
Some studies have used the physiological signals in VR environments [16,27],
but the relationship between the features of user interfaces in VR environments
and the physiological responses remains unclear.

Research on driving and flight simulation has been concerned with the issue of
realism in virtual reality (VR) environments. Since the objective is to seek max-
imum realism, user perception issues, such as people’s sense of presence (i.e.,
the feelings of being there) has been extensively studied [32,37]. Specifically,
researchers have attempted to develop a driving simulator with an intelligent
tutoring system, enhanced by a motion platform to improve presence [33]. How-
ever, in the context of flight simulation, the operator’s perceived fidelity is not
necessarily induced by the exact simulation of physical environments [32], and
graphical fidelity alone is not correlated with galvanic skin responses (GSR) in
the context of gaming [27]. One of the key issues regarding realism in intelligent
VR system design is to determine whether people have different responses to the
VR environments given user perceptions and physiological signals.

The use of physiological signals for building up computational models that
can detect cognitive load, mental stress and emotional state for VR environ-
ments has the potentials for further development of user-adaptive interfaces.
From user-centered design perspectives, the issues of user experience and physi-
ological responses in VR environments have been emerging [11,29]. However, the
issue of individual differences in cognitive processing and perception, which is
important for developing user-adaptive interfaces, has received scant attention
in driving and flight simulation studies [12,36]. More research on the effect of
individual differences in cognitive processing and user perception will provide
insights into the user-adaptive interface design in VR environments.

In our previous work we tried to establish a relationship between driving in-
tervention task with simulator driving performance [14]. In this study we intend
to address the issue of simulation validity by investigating the relationship be-
tween the verisimilitude of simple driving simulators and the physiological signals
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of GSR, blood volume pulse (BVP) and pupillary response (PR). We construct
computational models to detect physiological responses from an observer per-
spective and determine the relationship between the individual differences, user
perceptions and the physiological responses in driving simulation. The specific
research questions are as follows:

– Is there any difference in physiological responses for driving simulation en-
vironments?

– What is the relationship between the individual differences, user perceptions
and the physiological responses in a driving simulation?

– To what extent computational models can detect different driving situations
with high levels of accuracy?

Our key findings reveal that participants have significantly different GSR
responses using a combination of the monitor, keyboard, driving set and VR
headset of driving simulation environments. Individual differences such as gen-
der, previous experiences of driving and using a simulator and user perceptions
are correlated with some physiological responses. Our classification of the phys-
iological data using a hybrid GA-SVM and GA-ANN approach can achieve a
high level of accuracy, close to 90% for the driving situations of normal and
emergency.

2 Related Work

2.1 User Issues in VR Environments

Research on driving and flight simulation in virtual reality environments has been
concerned with user perception issues, such as people’s sense of presence and
simulation sickness. To evaluate user experience in VR, the concept of presence
(i.e., the feelings of being there) has been proposed and extensively used in the
research literature [22,32]. For instance, the operator’s perceived fidelity (i.e.,
“the degree to which visual features in the virtual environment (VE) conform to
visual features in the real environment” [32, p. 115]) is not necessarily induced
by the exact simulation of physical environments and a sense of presence can be
included in the formal assessment of fidelity. These user perception issues are
important considerations for the design of user interfaces in VR environments.

In driving simulation environments vehicle velocity has been identified as a
significant factor affecting driving simulation sickness and discomfort [25,34]. To
provide driving skills training with the goal of improving presence and immersion
in VR environments, a driving simulator with an intelligent tutoring system has
been developed and evaluated [33]. These studies suggest that mental workload
and user perception issues need further considerations for developing interfaces
in VR environments.
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2.2 User Perceptions and Physiological Responses

In addition to the use of questionnaires for assessing user perceptions, research
has also been concerned with the user’s cognitive and emotional states using
physiological signals, such as skin conductance, heart rate and pupillary re-
sponse. More specifically, physiological signals of skin conductance and heart
rate have been suggested to assess emotional states as objectives measures for
people’s responses in virtual environments [15]. Using a GSR sensor to measure
physiological arousal, it was found that graphical fidelity is not correlated with
GSR response [27]. To consider the effect of changes in scene brightness on the
pupillary response for 2D screens and VR HMDs (head-mounted displays), an
individual calibration procedure and constriction-based models of pupil diameter
have been proposed [16]. However, the relationship between the features of user
interfaces in VR environments and the responses measured by user-perceived
data or physiological signals remains unclear.

From user-centered design perspectives, issues of usability of visualization
systems, user experience and physiological responses in VR environments have
received more attention in the research literature. For example, the user-centred
design principles have been further applied to immersive 3D environments [11].
Besides, researchers have attempted to make connections between presence rat-
ings and usability score [29], and between being present and levels of stress,
measured by skin conductance response [37]. Overall, research has adopted the
user-centered design principles and techniques for system design in VR environ-
ments.

2.3 Individual Differences

Aside from user perception issues, research on user experience in VR environ-
ments have touched on the issue of individual differences in cognitive processing
and perception. For instance, it was found that there are gender differences in
simulator sickness [25]. Females experience more simulator sickness than males.
In the setting of a driving simulator, it was found that age makes a difference in
user ratings for assistive technology [36], but there is no difference in attentional
performance [6].

3 User Experiment

This study was designed to investigate the relationship between the verisimili-
tude of simple driving simulators and people’s physiological signals, specifically
galvanic skin response (GSR), blood volume pulse (BVP) and pupillary response
(PR). A within-subject design user experiment with twenty-four participants
was conducted for five configurations of driving simulation environment (See
Figure 1) that used a combination of monitor(s), keyboard, driving set, and VR
headset. The order of presentation was randomized by a Latin-squared design
to minimize possible effects of learning and fatique [19].
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3.1 Apparatus
We used five configurations for our driving simulation as shown in Figure 1
and applied the driving simulator software, CCD 5 for driving environments.

Fig. 1: The driving simulation environments include 1) single monitor and key-
board; 2) triple monitors and keyboard; 3) single monitor and driving set; 4)
triple monitors and driving set; and 5) VR headset and driving set.

Since we were interested in people’s reactions to different driving environments,
we chose to provide simple setups, steering, accelerating, braking and switching
gears between forward and backward in automatic gear style. To collect data
from both normal driving and emergency situations, the traffic and emergency
levels in the CCD software were set to 70% that increased the likelihood of emer-
gency situations like ’Hit a car’. This was done based on our pilot study results

Table 1: Driving event with corresponding situations.
Event Situation

1 Hit a pedestrian

Emergency

2 Almost hit a pedestrian
3 Hit an object
4 Almost hit an object
5 Hit a car
6 Almost hit a car
7 Normal driving Normal8 Stopping

for stimulating experiences without getting bored or annoyed. While normal driv-
ing consisted of basic driving activity like moving forward and stopping, emer-
gency situations included accidents or near-accidents involving objects, other
vehicles and pedestrians as listed in Table 1. We implemented a manual labeling
program for identifying these driving events that we describe in Section 4).

We used the E4 wristband 6 to collect real-time signals of GSR and BVP.
A customized client program based on the E4 wristband API was developed
for recording data, with a millisecond timestamp accuracy. We used the Eye-
Tribe eye tracker 7 for acquiring pupil diameters with timestamps. To create
5 https://citycardriving.com
6 https://www.empatica.com/en-gb/research/e4/
7 http://theeyetribe.com

https://citycardriving.com
https://www.empatica.com/en-gb/research/e4/
http://theeyetribe.com
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(a) Overview of the driving
simulator setup.

(b) Apparatus for collecting physiological signals in driv-
ing simulation.

Fig. 2: Simulator setup and experimental apperatus

realistic VR environments, we used Fove VR headset 8 with an integrated eye
tracker. The main CCD was displayed inside the Fove VR headset, with a du-
plicated CCD window displayed in the central monitor for mouse operation. A
customized client program based on Fove API was developed to record the pupil-
lary response data. The user interface of the sensor program was displayed on
the right monitor. All the physiological signals data were synchronised for data
analysis (See Figure 2b).

3.2 Procedure

After a brief introduction and after consenting to the study 9 the participant was
instructed to wear the sensors that where then initialization and calibrated. A
three-minute practice senssion allows the participant to become familar with the
devices, including the keyboard and steering wheel driving set. Then the partici-
pant was instructed to do free virtual driving for six minutes in each configuration
using different devices, with two minutes breaks in-between. The experimenter
ensured the proper setup at the beginning of each condition. Participants finished
a total of five configurations of driving simulation environments (See Figure 1
and Figure 2a), followed by a questionnaire regarding demographic information,
previous driving experiences and perceptions about the simulator.

4 Data Analysis

Our data analysis involved the labeling of each driving event in driving sim-
ulation environments, followed by the techniques of signal processing, feature
8 https://www.getfove.com
9 The study has been approved by the University Human Research Ethics Committee

https://www.getfove.com
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extraction, feature selection and classification of physiological signals to pre-
dict the driving event, situations and experimental condition. Statistical analysis
techniques were applied to examine the determine if there is any statistically sig-
nificant difference by the driving situation, event, and experimental condition, as
well as the relationship between user characteristics and physiological responses.

4.1 Labelling

During the experiment eight different driving events from two different categories
can occur, as presented in Table 1. The CCD software logged each event that
occurred during an experiment along with the related timestamp. By matching
these log files with the files containing the recorded signals a labeled dataset
as illustrated in Figure 3 was generated. Conclusively, the dataset is labeled by
configuration, driving event and driving situation.

Fig. 3: Example of a labelled signal. The dashed lines mark an event and where
obtained by matching the log files for the driving simulator software to the
physiological signals using their timestamps.

4.2 Signal Preprocessing

The synchronized data was filtered to remove noise, which is consistently present
in physiological signals recorded during user studies. This is caused by the exter-
nal environment or movements of the participant. The Butterworth band-pass
filter has been applied to both GSR and BVP signals [26]. The used bandpass
for GSR signals was 0.1 Hz to 0.5 Hz [4], while the bandpass for BVP signals
was 0.5 to 8 Hz [3,24]. The signal of the pupillary responses contains noise in
the form of eye blinks, which cause a recorded pupil diameter of 0. To remove
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those values linear interpolation was applied to the data [23], followed by the
application of an S-G filter to smooth out the signal [35].

The individual participants may have different baselines in their physiological
signals, which have to be removed by normalizing the measured data [5]. Max-
Min Normalisation has been used to do that.

4.3 Feature Extraction

Segmentation In order to extract meaningful features from the recorded data,
these data need to be segmented into subsegments of length |n|. This is done
utilizing the event by which the data has been labeled and which have been
introduced in Table 1. Figure 3 shows an example of a labeled GSR signal, where
the red dotted lines correspond to that point in time when an event was logged.
When an event was logged at time t0 the interval [t0-1, t0+2] has been extracted.
This three-second data represent stimuli from which the features are calculated
as described in Section 4.3. We chose this segmentation method according to the
results of many preliminary studies where we observed the participant’s reaction
to an event. On average, after two seconds, the participant’s physiological signal
recovered from the stimuli. Due to a time delay between the actual stimuli and
the point in time when the event is logged, we extract the data one second before
the timestamp listed in the log.

Figure 4 illustrates a segmented GSR signal. While each red dotted line
represents an event, the solid lines comprise the extracted time segment.

Fig. 4: Example of a segmented GSR signal. The solid lines comprehend one time
segment of 3 seconds length, the dashed lines mark an event.
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Feature Calculation Features were calculated from the time and the frequency
domain [1,30]. To transform the time series data into the frequency domain,
Fast Fourier Transform [10] was applied. We calculated mean absolute value
(MAV), arithmetic mean (AM), root mean square (RMS), standard deviation
(SD), waveform length (WL), zero crossing (ZC), skewness and kurtosis. Addi-
tionally, the absolute values of the recorded were summed up and the first and
second difference between adjacent measurements were calculated for all signals.
Zero crossing was calculated only for BVP signal since GSR and pupillary re-
sponses are not zero-mean. Waveform length was calculated for GSR and BVP
signal. The skewness and the kurtosis are calculated on the frequency domain
signal.

Since the classifier described in Section 4.5 are not scale invariant, the feature
set was standardised to [-1, 1].

4.4 Statistical Analysis

We construct mixed-effects models for determining the effects of driving simula-
tors (condition) and events on physiological responses. Mixed-effects distinguish
between fixed effects due to experimental condition and random effects due to
individual differences in a sample. We choose the mixed-effects models because
they are useful for the analysis of individual differences, with subjects and driving
simulators as crossed random effects [2]. We use a logarithmic cross-ratio anal-
ysis [9] to determine if there is any significant relationship between individual
differences and physiological responses.

4.5 Feature Selection & Classification

Genetic Algorithm The Genetic Algorithm (GA) is a commonly used feature
selection method in machine learning applications [28] to optimize the perfor-
mance of a classifier. GA is based on the ”survival of the fittest” from Darwinian’s
evolution theory. It iteratively selects random feature subsets organized in pop-
ulations and evaluates them on some fitness function. We used the classification
accuracy of the respective classifier as the fitness function for the GA.

The size of a population has been set to ten, while the maximum number
of generations was 1000. The four fittest feature combinations formed the next
population by performing six mutations among them.

The termination criteria of the GA was the overall change in accuracy over
the last ten iterations as presented in equation 1.

AccChange = xn −

n∑
i=n−10

xi

n
(1)

where x ∈ X and n = |X|. X denotes the set of all calculated accuracies obtained
from the respective classifier.
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Support Vector Machine Support Vector Machines (SVMs) are a broadly
used supervised classification algorithm [13,38]. A SVM classifies the data points
by finding the best separating hyperplane in the n-dimensional feature space,
which separates the data with the greatest margin possible.

For the experiments described in this paper an SVM model with a sigmoid
kernel and an error rate of 5.0 has been used. These hyperparameters have been
set after tuning the model using Grid Search.

Artificial Neural Network Artificial Neural Networks (ANNs) are supervised
learning algorithms that are inspired by the working principle of the human
brain and have been used successfully on physiological data [13]. ANNs consist
of artificial neurons that are connected and are organized in layers. Each neuron
can process received information and transmit it to the neurons connected to it.
The signal is processed through the input layer, possibly followed by multiple
hidden layers, to the output layer, which computes the final classification result.

The ANN used in our study consisted of one hidden layer with eight neurons,
which used a Scaled Exponential Linear Unit (SELU) as activation function [20].
The output layer utilized the Softmax activation function and the weights were
optimized using the Adam optimiser [18].

5 Results

This section reports the results and findings from the analysis of physiological re-
sponses in different situations, event and conditions, followed by the relationship
between individual differences and the physiological responses. We then report
the accuracy of classifying the physiological data, using a hybrid GA-SVM and
GA-ANN approach for driving simulation environments.

5.1 Relationships among Event, Condition, and Physiological
Signals

Our strategy for model fitting follows the approach by Baayen et al. [2]. Our null
model initially includes random intercepts for condition and subject. To fit the
data, we perform an automatic backward model selection of fixed and random
parts of the linear mixed model [21]. Since the random intercepts for the subject
are significant for both GSR and BVP, we choose a mixed-effects model with
subject controlled as random effects.

Table 2 presents the constructed fixed and random effects models for both
GSR and BVP. Model 1 is the baseline model with subject as random effects,
whereas Models 2, 3, and 4 specify the fixed effects of the condition, event, a
combination of both, as well as random effects.

Table 3 shows that Model 4 with condition and event as fixed effects accounts
for 31.8% of variances, whereas Model 2 with the condition as fixed effects ac-
counts for 21.4% of variances. Model 3 indicates that event as fixed effects only
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Table 2: Model construction of fixed and random effects for measures of physio-
logical responses by GSR and BVP.

Fixed and Random Effects Model

Model 1 (1|subject)
Model 2 condition + (1|event) + (1|subject)
Model 3 event + (1|condition) + (1|subject)
Model 4 condition + event + (1|subject)

Note: Condition refers to types of driving simulator. Random intercepts for subject,
event and condition are specified with (1|subject), (1|event) and (1|condition) respec-
tively.

explain 0.6% of variances, though the effect of the event is statistically signif-
icant. Judging from the AIC value, Models 2, 3 and 4 are significantly better
than our baseline Model 1. However, we cannot select the best model based on
AIC alone since the values are close for Models 2, 3 and 4. Nonetheless, the
results demonstrate that the event has significant but small effects on the mean
of GSR. Condition, i.e. different configurations of the driving simulator has very
significant effects on the mean of GSR.

Table 3: Model selection for effect of condition and event on mean of GSR.

Mean of GSR
Model 1 Model 2 Model 3 Model 4

Condition 0.015∗∗∗ 0.015∗∗∗
(0.001) (0.001)

Event −0.002∗ −0.002∗
(0.001) (0.001)

Constant 0.041∗∗∗ −0.003 0.051∗∗∗ 0.006
(0.003) (0.004) (0.012) (0.006)

N 593 593 593 593
Log Likelihood 977.035 1,046.232 1,044.777 1,042.606
AIC −1,948.069 −2,082.464 −2,079.554 −2,075.213
Marginal R2 0.000 0.214 0.006 0.318
Conditional R2 0.037 0.273 0.318 0.277

Note: ∗p < .05; ∗∗p < .01; ∗∗∗p < .001; AIC: Akaike Information Criterion.

Further analysis reveals that condition, i.e. different configurations of driving
simulator has significant effect on GSR, a measure of mental stress. Event has
significant but small effect on GSR. Specifically, a configuration of the driving
set and VR headset induces a higher level of stress than other configurations.
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Table 4: Model selection for effect of condition and event on mean of BVP.

Mean of BVP
Model 1 Model 2 Model 3 Model 4

Condition 0.003∗∗∗ 0.003∗∗∗
(0.001) (0.001)

Event −0.001∗ −0.001∗
(0.0004) (0.0004)

Constant 0.044∗∗∗ 0.035∗∗∗ 0.049∗∗∗ 0.040∗∗∗
(0.003) (0.003) (0.004) (0.004)

N 593 593 593 593
Log Likelihood 1,458.390 1,466.051 1,466.051 1,461.387
AIC −2,910.781 −2,922.102 −2,922.102 −2,912.773
Marginal R2 0.000 0.032 0.006 0.038
Conditional R2 0.315 0.351 0.367 0.353

Note: ∗p < .05; ∗∗p < .01; ∗∗∗p < .001; AIC: Akaike Information Criterion.

Table 4 reveals that there is a very small effect of condition and event on the
mean of BVP, a measure of cognitive load and emotional state. The fixed effects
of condition only account for 3.2% of variances, whereas the effects of the event
explain 3.8% of variances. The results suggest that the level of cognitive load
measured by BVP does not change by condition and event. And we do not find
statistically significant results for pupillary responses.

Overall, we find that participants have different levels of mental stress mea-
sured by GSR in different configurations of the driving simulator. The high level
of stress is correlated with a configuration of the driving set and VR headset.
The results suggest that the level of stress measured by GSR varies in different
configurations. Therefore, our results confirm the validity of driving simulation
in the simple setup with monitors and driving set. The use of VR headset has
increased the level of stress, as observed in the significant differences in GSR
signals.

5.2 Relationships among Individual Differences and Physiological
Responses

To determine whether there is any correlation between the individual differences
and the physiological signals, a logarithmic odds ratio analysis was conducted.
Both dependent and independent variables were broken into “high” and “low”
cases with the mean as cut point. Table 5 is a summary of the results. Overall, we
find that the individual differences of gender, whether people wear glasses, user
perceptions of devices affecting driving performance and whether people can see
everything clearly through VR headset were correlated with the mean of GSR
and BVP. That is, demographics, previous experience, and user perceptions are
correlated with the GSR and BVP signals.
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Table 5: Summary of the relationship between individual differences and physi-
ological signals. User characteristics N = 593, Statistical significance at 95%.

CPm OR LO SE t CPm OR LO SE t
Gender Driving simulator
GSR mean 0.04 1.71 0.54 0.18 2.92* 0.04 0.48 -0.74 0.31 -2.39*
BVP mean 0.04 1.75 0.56 0.17 3.26* 0.04 1.02 0.02 0.25 0.08
Left eye PR 0.89 1.13 0.12 0.17 0.68 0.89 0.95 -0.05 0.26 -0.21
Right eye PR 4.32 1.87 0.63 0.17 3.65* 4.32 0.68 -0.39 0.26 -1.49
Wear glasses Devices performance
GSR mean 0.04 0.59 -0.53 0.20 -2.73* 0.04 0.69 -0.37 0.18 -2.07*
BVP mean 0.04 0.70 -0.36 0.18 -2.04* 0.04 0.51 -0.68 0.17 -3.93*
Left eye PR 0.89 1.07 0.07 0.18 0.40 0.89 0.92 -0.08 0.17 -0.47
Right eye PR 4.32 1.35 0.30 0.18 1.70 4.33 0.87 -0.14 0.17 -0.82
Driving license VR Clearly
GSR mean 0.04 0.45 -0.80 0.29 -2.72* 0.04 1.66 0.51 0.18 2.88*
BVP mean 0.04 0.79 -0.24 0.29 -0.83 0.04 1.63 0.49 0.17 2.96*
Left eye PR 0.89 1.17 0.16 0.30 0.53 0.89 1.22 0.20 0.17 1.18
Right eye PR 4.33 0.44 -0.82 0.30 -2.70* 4.33 1.23 0.21 0.16 1.26
Steering wheel
GSR mean 0.04 1.15 0.14 0.21 0.66
BVP mean 0.04 1.01 0.01 0.20 0.07
Left eye PR 0.89 0.97 -0.03 0.20 -0.16
Right eye PR 4.33 1.60 0.47 0.20 2.36*
Note: CPm: Cut Points (Mean); OR: Odds Ratio; LO: Log Odds; SE: Standard Error;
t: t-Value marked with asterisk (*) when statistically significant.

Specifically, female participants were more likely to have a higher mean of
GSR and BVP than male participants. People who wear glasses were more likely
to have a lower mean of GSR and BVP than people who didn’t wear glasses.
People who feel that devices affecting driving performance were more likely to
have a lower mean of GSR and BVP. People who feel that they can see everything
clearly through VR headset were more likely to have a higher mean of GSR and
BVP. People who have more experiences using a driving simulator were more
likely to have a lower mean of GSR, a measure of mental stress.

In other words, female participants were more likely to have higher levels of
stress. Participants with more previous experiences (i.e., wearing glasses, driving
license, driving simulator) were more likely to have lower levels of stress. The
gender differences were also found in the BVP signals, a measure of cognitive
load and emotional state. Female participants were more likely to have a higher
mean of BVP by a factor of 1.75, or 75% than male participants.

Concerning the pupillary responses, female participants and those who have
more left steering wheel experiences were more likely to have a higher mean
of right eye pupillary response by a factor of 1.87 (or 87%) and 1.60 (or 60%)
respectively. By contrast, people who have a driving license were more likely to
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have a lower mean of GSR by a factor of 0.45 (or 55%), and have a lower mean
of right eye pupillary response by a factor of 0.44 (or 56%).

These results suggest that gender is an important demographic factor af-
fecting participants’ physiological responses to different environments in driving
simulation. It is more likely that female participants are more stressed and use
more cognitive resources in the simulation environment. Participants with previ-
ous experiences in real-life driving and exposure to driving simulators are more
likely to have a lower level of stress. Participants’ perceptions about whether the
devices affect their performance and whether they can see clearly through the
VR headset are correlated with GSR and BVP in opposite directions.

5.3 Classification

The ANN and SVM described in the Sections 4.5 and 4.5 were trained on the the
34 features described in Section 4.3. Additionally, we included the participants’
gender in the feature set because our results suggest that gender is correlated
with physiological responses in this study (See Table 5). Consequently, the final
dataset included 35 features.

Tables 6a and 6b describe the accuracy (Acc) and standard deviation (SD)
obtained by applying 10-fold cross-validation. Iterations correspond to the num-
ber of necessary iterations the GA required until the optimal performance was
reached. The presented number of iterations corresponds to the total number
of iterations until the GA terminated. The termination criteria were the overall
change in accuracy over the last 10 iterations as presented in equation 1.

Tables 6a and 6b summarize the classification performance of the GA-SVM
and GA-ANN approach. The high standard deviation using GA-SVM suggests,
that the SVM is more sensitive to the distribution of the data samples in the
training and test set.

The SVM shows significantly better performance when classifying the condi-
tion (5 classes, e.g. ”VR headset”) in which the participant is driving. However,
since its standard deviation is much higher than the ANN’s standard deviation,
this result largely depends on the distribution of the data samples.

The ANN outperforms the SVM when classifying the event (8 classes, e.g. ”hit
a pedestrian” or ”stopping”). As again indicated by the standard deviation of
the SVM, it might be able to match the ANNs performance at this classification
task.

Both classifiers perform similarly when classifying the driving situation (2
classes, ”normal” or ”emergency”).

The GA required only a few iterations to find the optimal feature subset
on both classification approaches. This indicates that the selection of a feature
subset has only a minor impact on the classification performance of the used
classifiers. However, both classifiers pursued to reduce the feature set, which
initially included 35 features. The GA-ANN approach selected 22 features for the
condition, 18 features for the event and 16 features for the situation classification
task. The GA-SVM selected 20, 14 and 17 features respectively.
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Table 6: Classification results.
Acc [%] SD Iterations

Condition 59.33 12.25 26
Event 65.87 6.46 10
Situation 87.49 2.28 11

(a) GA-SVM

Acc [%] SD Iterations
Condition 47.09 0.16 10
Event 71.24 1.87 12
Situation 87.75 1.02 10

(b) GA-ANN method

6 Discussion

6.1 Is There any Difference in Physiological Responses for Driving
Simulation Environments?

Our findings indicate that there is no significant difference in participants’ BVP
and pupillary responses in the configurations of driving environments. However,
there are significant differences in GSR. Since the environmental simulations
can be validated by the ability to replicate human responses in physical environ-
ments [22], our study suggests that people do not have different responses to the
driving simulations by BVP signals and pupillary responses. Our results partially
support the use of simple driving simulators as empirical tools in user behavior
research. Our finding that there are significant differences in GSR for different
driving simulators, however, shows that the use of VR headset induces a higher
level of physiological arousal. In the context of virtual environments intended
to create the feeling of presence in immersive environments, research shows that
increased graphical quality alone is not correlated with GSR responses in the
gaming context [15]. Therefore, our findings suggest that participants do not
have different BVP and pupillary responses, while the use of a VR headset and
a steering wheel driving set induces a higher level of physiological arousal in
driving simulation environments.

6.2 What is the Relationship Between the Individual Differences,
User Perceptions and the Physiological Responses in a Driving
Simulation?

Our findings show that gender is an important factor affecting physiological re-
sponses to different environments in driving simulation. Previous research on
the role of gender in simulator sickness has been inconclusive [25,36]. Our re-
sults support that females experience more simulator sickness than males [25],
and females are more likely to feel stressed and use more cognitive resources in
the simulation environment. Participants with previous experiences in real-life
driving and exposure to driving simulators are found to have a lower level of
stress. These findings correspond to the results on driving style familiarity and
driving comfort [12], showing that driving style familiarity interacts with driving
comfort by different age groups. Therefore, the demographic variables of gender,
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previous driving experience and age and their effects on physiological responses
and user perceptions need further research.

Concerning user perceptions, we find that there are discrepancies between
the perceived feelings and physiological responses. Specifically, whether the de-
vices affect participants’ performance and whether they can see clearly through
the VR headset are correlated with GSR and BVP responses in opposite direc-
tions. We speculate that since the use of a VR headset induces a higher level
of physiological arousal and participants are engaged with the experiment, they
are more likely to have higher GSR and BVP responses when prompted with
the question of whether they can see clearly through VR headset. On the other
hand, user perceptions about their performance might be explained by the new
simulation environments introduced in our user experiment. Nonetheless, future
research needs to consider user perceptions of speed and distance in simulated
environments [17,22,33].

6.3 To What Extent can Computational Models Detect Different
Driving situations with High Levels of Accuracy?

Our findings suggest that classifying the physiological data using a hybrid GA-
SVM and GA-ANN approach can achieve a high level of accuracy, close to 90%
for driving situations. Our performance evaluation using 10-fold cross-validation
shows that the choice of the feature subset has minor impact on the classification
performance, while the choice of the classifier can improve the accuracy for some
classification tasks.

The results described in Section 5.3 and shown in the Tables 6 suggest the
Genetic Algorithm mainly converged after few iterations. Therefore, it seems that
the choice of a specific feature subset has a minor impact on the performance
of the classifier. Nevertheless, the SVM classifier required more iterations and
shows higher standard deviation, which corroborates the observations of other
researchers [28] that the SVM is more sensitive to the features used for training.

Our research shows that it is possible to detect what kind of peripheral
devices the user applies during the usage of a driving simulator or similar soft-
ware. That contributes to the development of user adapted simulator software
or games. By detecting the type of peripheral device that is used to visualize
the software, the resolution or the layout of the user interface can be adapted
to the specific device like a VR-Headset. In the case of a driving simulator, the
configuration of the driving parameters can be adapted to a keyboard or a driv-
ing set. Among others, the latency and accuracy of how the steering impulses of
the user are processed by the software can be altered.

6.4 Limitations and Future Research

Since this user experiment was conducted in a laboratory setting, one should be
cautious about the generalisability of the results to the general population.

Our segmentation method described in Section 4.3 works based on the labels
that have been matched with logged events from physiological signals. Due to



User Engagement with Driving Simulators 17

the nature of the domain and the driving simulator experiment in particular as
normal driving situations will always occur much more frequently than emer-
gencies. This leads to multiple subsequent labels for normal driving compared to
other labels in the dataset, resulting in the trained model to be biased towards
normal driving with good classification results for this class and reduced results
for less frequent driving events. Researchers [8,31] have proposed two approaches
for minority oversampling to improve learning from imbalanced datasets that we
will apply in future work.

For the feature selection of eye gaze data, we hypothesise that the number of
fixations, as well as the average fixation duration, are higher during an emergency
event like ”Hit a pedestrian” than in a normal driving situation. At the same
time, saccades are expected to occur more frequently during normal driving
situations. We suggest future research on additional features (e.g. fixations and
saccades) and user-perceived sensory fidelity in different simulation environments
for enhancing the user experience of presence [27,29] to make different driving
situations more distinctive.

The analysis of pupillary responses could be enhanced by further consider-
ing scene brightness caused by the changes in driving scenes in VR environ-
ments [16]. To validate the use of the simulated environment for driving skills
training purposes, future research can use new driving scenarios in automated
driving simulators and simulation of tactile or audio feedback of the real driv-
ing environment, with particular emphasis on the usability issues through the
analysis of physiological signals [7,29]. Additionally, the sensitivity of the SVM
to physiological signal processing can be further investigated.

Our findings inform about the verisimilitude of simple driving simulators on
the driver’s perceived fidelity and physiological responses. This can be used to
inform on the design of driving simulators in support of training. We suggest
that individual differences such as prior driving experiences need to be con-
sidered in the design of a driving simulator (e.g. by offering difficulty-levels).
Virtual environments can increase immersion while also increasing stress levels
that should be considered in design (e.g. by leveraging realism through adjusting
the likelihood of potentially dangerous situations).

7 Conclusion

We investigated the relationship between the verisimilitude of simple driving
simulators and people’s physiological signals, specifically galvanic skin response
(GSR), blood volume pulse (BVP) and pupillary response (PR). We found that
participants do not have different BVP and PR in driving simulation environ-
ments, which supports the use of steering wheel driving set as empirical tools
in user behavior research. Individual differences such as previous experiences of
driving should be considered in the design of driving simulators since they are
correlated with physiological responses. In terms of predictability, our results
further suggest that classifying the physiological data using a hybrid GA-SVM
and GA-ANN approach can achieve a high level of accuracy, close to 90% for
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driving situations while showing that the choice of the feature subset only has a
minor impact on the classification performance. Our findings inform about the
verisimilitude of simple driving simulators on the driver’s perceived fidelity and
physiological responses and provide implications for the design of future driving
simulators.
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